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there will be errors, do we need to care? 

 

 

•  Keynote: “Failure, Resilience, Opportunity and Innovation” 
    John Daly, Department of Defense 

•  How will HPC continue to provide insight into the nation’s most 
important and challenging problems using computers that fail 
regularly and even give wrong answers? Resilience is not about 
making all of the errors go away. On the contrary, systems 
intended to run without errors often fail in the most catastrophic 
ways. Resilience is about understanding how systems fail and 
creating applications that can fail their way to success. 

•  …so, should we really care about failure? 
•  Is there an algorithm that can tell us whether we should care? 
•  Can we use this algorithm to redesign our calculations so that 

we needn’t worry about failure? 



the challenge: resilience at the exascale  

 

 

•  It’s expected failure will occur as a part of normal operation. 
–  I’ll focus on “bad data”, but in many cases I’ll generalize to “failure” 

•  What algorithmic changes can enable resilience at exascale? 
–  conjecture: an exascale system should be driven by statistics,                   

and utilize redundancy where failure is expected to have a sizable impact 
–  robustness against failure over the need to restart 
–  programming models for dynamic flexibility in execution 
–  asynchronous parallel and stochastic operation 
–  integrated statistical forecasting and metric evaluation 

•  How can statistics play a huge role in resiliency at exascale? 
–  identifying and filtering out errors (e.g. outliers that point to ‘bad data’) 
–  statistical sampling (for known distributions) 
–  statistical estimators/validators for system/algorithm behavior 
–  integrated driver for algorithmic robustness against failure 



resilience and the state machine 

 

 

•  conjecture: if everything, including data, has it’s state captured 
by the system’s state machine, any form of failure can be 
mitigated (or at least recovered from). 
–  all state is captured in objects, including data 
–  programming models are used to provide flexible dynamic execution 

•  This design is used by several Tier-1 banks for their global 
algorithmic trading and market risk systems. 
–  all calculations are managed on an abstract syntactic graph 
–  all state is captured in objects, and must reside in nodes on the graph 
–  the graph itself is an object, and can be stored in a database 
 

•  Both the data and the code are treated as objects which are 
versioned & stored in (memory) instances of NoSQL databases 
–  previously, data was stored on disk accessed by M’s of processors! 



goal: know with certainty what you have 

•  …TBA… 

data is versioned 
code is versioned 
nothing is deleted 

go “back in time” and exactly 
reproduce any calculation, and 
validate against stored results  

regulatory requirement: 
financial instruments must 
be globally unique (across 
every database and every 
trader’s laptop) 
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data history managed through revisioning 

Two clients each get copies of revision 10 of '/data' 
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data history managed through revisioning 

Each client does a calculation that modifies '/data' 
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data history managed through revisioning 

The first client writes '/data' back to the database. 
The revision number is increased to 11. 
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data history managed through revisioning 

The second client attempts to write '/data'. The 
revision numbers don't agree, so the write fails. 

a merge is needed 
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global data synchronization is satellite-hub 

databases can be unioned 
by a path-order mechanism 
 
databases are synchronized 
by a daemon process 
 
if data is “corrupted” in one 
location, sync will detect it 



klepto: asynchronous sharing of state 

 

 

•  klepto features:  
–  unified API for caching and archiving 
–  cache-to-archive interaction strategies 

–  lru, lfu, mru, random_replace, … 

–  backends: memory, file, memmap, directory, database, db table 
–  unified API for key encoding / serialization / hashing / encryption 

–  extensible: leverage pickle, json, dill, codecs, md5, … you pick 

–  ‘ignore’ selected arguments (partial arg caching) 
–  cache interpolation by rounding  
–  can leverage SQLAlchemy, numpy internals 

•  planned and in-progress: 
–  leverage: hdf, redis, shared memory 
–  more interpolation algorithms 

–  kriging, etc… 

–  asynchronous cache-to-archive updates 
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the time-series problem: market risk 

 

 

n ≤ N 
 t ≈ 0 t 

•  use Monte-Carlo (MC) to calculate                                                     
risk envelope (var and hedge) 

•  model built from Bayesian inference                                           
on existing market data  

•  the impact of bad data is likely small 
–  mitigated by N-parallel MC runs 
–  mitigated by sampling in interpolation 
–  mitigated by using HPC to shrink t 

•  big banks w/ large HPC often perform simple linear statistics 
–  speed trumps accuracy 



non-accumulating iterative problems  

 

 

•  time-series problems map well to data stream analytics 

•  robust statistics can be applied “in streaming mode”, as results 
are generated (as opposed to post-mortem) 
–  O(N) calculations to produce/process data 
–  O(N) calculations required to identify and reject outliers in data 
–  calculation of approximate sampling statistics (for known distributions)  
–  fast and robust statistics is an area of active research 

•  failure is generally not catastrophic 
–  each time step is non-accumulating 
–  the impact of bad data is often contained to a single calculation 
–  the more data/updates, the more resilient 
 

•  is it a resilience strategy to convert algorithms to this type? 
–  asynchronous parallel: speed + resiliency  



accumulating iterative problems 

  

 

•  time-evolution is not as well suited for data streaming analytics 

•  robust statistics can be applied “in streaming mode” 
–  tend to be larger than O(N) 
–  tend to be approximate and fragile 
–  also an area of active research 

•  failure may be catastrophic 
–  each time step is accumulating, so errors are generally compounded 
–  the impact of bad data is rarely contained to a single calculation 
–  may be mitigated by adding redundancy and randomness 
–  may be mitigated by validation against expected model error 

•  materials modeling is generally a time-evolution problem 
–  does that mean we cannot convert to robust asynchronous parallel? 



time-evolution: a leading question 

…	
  

…	
  	
  	
  

•  global optimization underlies almost every flavor of UQ, however is 
arguably one of the most limiting factors in predictive science – primarily 
because optimization algorithms are iterative (i.e. “serial”). 

 
•  can we rethink optimization (and statistics/UQ) to be embarrassingly 

parallel? 
or	
  maybe	
  be*er…	
  

•  if you had a global optimizer and exascale computing resources, would 
you pose statistics/UQ questions differently? 

	
  
	
  
	
  

•  I	
  have	
  built	
  an	
  op5miza5on	
  framework	
  that	
  is	
  designed	
  to	
  address	
  large-­‐
dimensional	
  and	
  highly-­‐constrained	
  non-­‐convex	
  global	
  op5miza5on	
  and	
  rare-­‐
event	
  UQ	
  problems.	
  	
  A	
  key	
  aspect	
  of	
  how	
  it	
  works	
  is	
  that	
  an	
  op5mizer	
  can	
  
dynamically	
  spawn	
  a	
  hierarchy	
  of	
  op5mizers	
  to	
  address	
  por5ons	
  of	
  the	
  
problem,	
  and	
  those	
  nested	
  op5mizers	
  can	
  also	
  do	
  the	
  same,	
  and	
  so	
  on.	
  

•  One	
  caveat	
  is	
  that	
  each	
  nested	
  op5miza5on	
  must	
  not	
  fail	
  to	
  find	
  it’s	
  target.	
  



mystic: scalable constraints operators 

 

 

box 
constraints 

penalty 
functions 

  from mystic.math.measures import mean, spread!
  from mystic.constraints import with_penalty, with_mean!
  from mystic.constraints import quadratic_equality!
!
  # build a penalty function!
  @with_penalty(quadratic_equality, kwds={'target':5.0})!
  def penalty(x, target):!
    return mean(x) - target!
!
  # define an objective!
  def cost(x):!
    return abs(sum(x) - 5.0)!
!
  # solve using a penalty!
  from mystic.solvers import fmin!
  x = array([1,2,3,4,5])!
  y = fmin(cost, x, penalty=penalty)!
!
!
!
!
  # build a functional constraint!
  @with_mean(5.0)!
  def constraint(x):!
    return x!
!
  # solve using constraints!
  y = fmin(cost, x, constraint=constraint)!

explicit and can be parallelized, 
can strongly reduce search space 

fast, but implicit, inaccurate, and 
can add spurious features 

Traditional constraints methods 
apply a penalty to the cost 
when the constraints are 
violated 

data point 
& functional 
constraints 

operators that commute 
can be spawned in parallel 

Decoupling constraints often 
creates a central 
convex optimization 



pathos: programming model abstractions 

 

 

   # select and configure a basic monitor!
   from pathos import Monitor!
   evalmon = Monitor()!
!
   # apply to a user-provided function!
   @monitored(evalmon)!
   def identify(x)!
     return x!
!
   # select and configure a parallel map!
   from pathos.maps import SlurmMpirunPool!
   mpi_map = SlurmMpirunPool(8)!
!
   # evaluate the model in parallel!
   y = mpi_map(identify, range(16))!
!
!
!
!
!
!
   # select and configure a parallel map!
   from pathos.maps import IpcPool!
   ipc_map = IpcPool(2, servers=['foo.caltech.edu'])!
!
   # evaluate the model in parallel!
   y = ipc_map(identify, range(16))!

map provides batch 
processing on an potentially 
distributed or parallel service  

typically 80-90% as efficient as 
hand-tuned parallel code 

•  rapid exploration of system design: 
–  communication patterns 
–  parallelism hierarchies 
–  memory hierarchies 
–  synchronization and scheduling 
–  resilience strategies 
–  system efficiency 

Reader 

Writer 

Simulator 

Reducer 

Simulator Simulator Simulator 

Mapper 



asynchronous map: speed and robustness  

 

 

•  blocking map is fragile and prone to failure 
•  …so decouple the launch and termination of parallel map 

 

•  utilize a stop condition for when results are “good enough” 
–  simple case: 75% of the results have returned 
–  better case: use statistics to determine if “good enough” 

•  note: we can still collect and archive all launched runs 
–  blocking time to the next iteration can be greatly reduced 
–  a “condition” removes requirement all runs complete 

N 

t 

reduces	
  5me	
  per	
  itera5on	
  
without	
  loss	
  in	
  accuracy	
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scalability with asynchronous parallelism 

 

 

•  leverage asynchronous parallel computing in optimization 
–  optimizers have and can save state (to file or database archive), have 

streaming diagnostic monitors 
–  optimizers are serializable and asynchronous (thus are non-blocking 

parallel distributed) 
–  has slots for parallel maps on the objective, constraints, iteration, and the 

solver itself (for parallel ensemble and nested solvers) 
–  has memory caching and transparent archiving 
–  dynamic optimization strategies, compound termination conditions, 

speed-up with dimensional collapse 
–  optimizers are event-based, can react to changing constraints & objective 

•  constraints operators enable scalable nonlinear optimization 
–  apply constraints as an "operator" 
–  almost embarrassingly parallel 
–  constraints solvers are dynamically launched by a governing optimizer 
–  has been used to solve problems with 1000's of nonlinear constraints 

operators that commute 
can be spawned in parallel explicit and can be parallelized, 

can strongly reduce search space 



mystic: massively-parallel optimizers  

 

 

   # the function to be minimized and the bounds!
   from mystic.models import rosen as my_model!
   lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]!
!
   # get monitor and termination condition objects!
   from mystic.monitors import LoggingMonitor!
   stepmon = LoggingMonitor(1, 'log.txt')!
   from mystic.termination import ChangeOverGeneration!
   COG = ChangeOverGeneration()!
!
   # select the parallel launch configuration!
   from pyina.launchers import TorqueMpi!
   my_map = TorqueMpi('25:ppn=8').map!
!
   # instantiate and configure the nested solver!
   from mystic.solvers import PowellDirectionalSolver!
   my_solver = PowellDirectionalSolver(len(lb))!
   my_solver.SetStrictRanges(lb, ub)!
   my_solver.SetEvaluationLimits(1000)!
!
   # instantiate and configure the outer solver!
   from mystic.solvers import BuckshotSolver!
   solver = BuckshotSolver(len(lb), 200)!
   solver.SetRandomInitialPoints(lb, ub)!
   solver.SetGenerationMonitor(stepmon)!
   solver.SetNestedSolver(my_solver)!
   solver.SetSolverMap(my_map)!
   solver.Solve(my_model, COG)!
   # obtain the solution!
   solution = solver.bestSolution 

•  What happens when we use 
mystic to address questions in 
statistical science? 

–  statistics as global optimizations 
–  optimization over all possible 

scenarios (or priors), using statistical 
constraints 

–  represent probability distribution as 
a basis set 

–  apply constraints as “operators” that 
restrict space 

–  operators can spawn nested 
optimizations to solve constraints  

with	
  enough	
  op5mizers,	
  we	
  get	
  a	
  global	
  map	
  
of	
  the	
  poten5al	
  surface	
  in	
  a	
  single	
  shot	
  

op5mizers	
  can	
  be	
  set	
  to	
  search	
  for	
  minima,	
  
maxima,	
  saddle,	
  and	
  other	
  inflec5on	
  points	
  	
  



example: degeneracy in structure solution 

§  …	
  

§  …	
  

…	
  

• Solving a 1D proxy problem with multiple degenerate minima, finding the number of such minima. 
• Constructed from 3 sets of Gaussians which may be mixed with different weights. 
– Step 1: pick a point on the ternary source diagram 
– Step 2: find the degeneracy for that version of the target function 
– Step 3: use downhill method to choose a new point. Goal is to find point of lowest degeneracy 
– Step 4: repeat many times, try different highly parallel searches 
• Problem is hard for solvers because there are large flat regions of the surface. 



benchmark with ensemble solvers 
…	
  

Simplex:	
  1000s	
  
(100	
  points	
  	
  at	
  
10s	
  /point)	
  

Buckshot	
  
Simplex:	
  200s	
  
for	
  batch	
  of	
  
100	
  solvers	
  on	
  
512	
  cores	
  

Powell:	
  500s	
  
(100	
  points	
  	
  at	
  
5s	
  /point)	
  

Buckshot	
  Powell:	
  
68s	
  for	
  batch	
  of	
  
100	
  solvers	
  on	
  
512	
  cores	
  	
  

Diff	
  Ev:	
  9500s	
  
(100	
  points	
  	
  at	
  
95s	
  /point)	
  	
  
popula5on	
  of	
  
40	
  



Single	
  Buckshot	
  Powell	
  
search	
  for	
  all	
  minima	
  

example: ensemble global search 
…	
  

Six-­‐itera5on	
  Buckshot	
  
Powell	
  search	
  for	
  all	
  
minima.	
  

Two-­‐itera5on	
  Buckshot	
  
Powell	
  search	
  for	
  all	
  minima.	
  
	
  
Interpolate	
  points	
  to	
  build	
  a	
  
surrogate.	
  

“cache”	
  in	
  this	
  case	
  is	
  an	
  abstrac5on	
  
on	
  storage.	
  “load”	
  is	
  local	
  memory	
  
cache,	
  while	
  “hit”	
  is	
  an	
  archive	
  hit.	
  
“miss”	
  is	
  a	
  new	
  point.	
  	
  Results	
  shown	
  
are	
  for	
  when	
  configured	
  for	
  direct	
  
connec5vity	
  with	
  archival	
  database.	
  



example: building the optimal surrogate 

 

 

Can	
  we	
  build	
  a	
  surrogate	
  for	
  a	
  n-­‐dimensional	
  
surface,	
  where	
  we	
  can	
  op5mally	
  replicate	
  the	
  
original	
  func5on’s	
  behavior?	
  

You	
  can	
  be	
  smart	
  about	
  it,	
  or	
  use	
  
brute	
  force.	
  	
  Let’s	
  use	
  brute	
  force.	
  



example: building the optimal surrogate 

 

 

Standard	
  solu5on:	
  pick	
  a	
  grid	
  
density,	
  and	
  drop	
  points	
  on	
  the	
  grid.	
  
Then	
  interpolate.	
  

Can	
  we	
  do	
  be*er?	
  



example: building the optimal surrogate 

 

 
Be*er	
  solu5on:	
  pick	
  points	
  at	
  all	
  of	
  
the	
  cri5cal	
  points	
  for	
  the	
  unknown	
  
surface.	
  Then	
  interpolate.	
  

Need	
  to	
  use	
  an	
  op5mizer	
  capable	
  of	
  
reliably	
  finding	
  all	
  cri5cal	
  points.	
  	
  
Luckily,	
  we	
  have	
  one.	
  

Turning	
  points	
  not	
  shown.	
  
As	
  a	
  “bonus”	
  you	
  also	
  get	
  the	
  
points	
  from	
  each	
  func5on	
  
evalua5on	
  in	
  the	
  op5miza5on.	
  



can catastrophic failure be a good thing? 

 

 

–  N. DeBardeleben LANL LA-UR-12-20261 

however, catastrophic 
failure should be easy  
to detect by examining 
model error (statistics) 
 
 
can we leverage model 
error to provide resilience? 

one flipped bit in a FFT can 
have catastrophic effects 



model error in guided shock simulation 

 

 

shock experiment 

shock simulation 

interesting regions 

In shock simulations, we typically construct a model, then 
after we simulate we try to determine “misfit” (i.e. model error). 
We then readjust parameters, and try again. 
 
What if we had a process to build a shock model that was guaranteed 
to satisfy model error constraints everywhere requested?  
 
What if, as a bonus, the process was resilient to catastrophic failure? 

Could we also use 
some combination of 
model error and 
asynchronous 
parallelism to speed 
up the calculation and 
make it more robust 
against error?   

Ahead of each “model-error guided” model 
evaluation, we run a burst of “model-error 
guided” surrogate model evaluations.  We try 
to forecast the next coarse model evaluation 
point. Also, if the surrogate performs well, 
switch to the surrogate. 
 
Could something like this work? 



statistics will play a huge role at exascale 

 

 

•  exascale systems should have to operate under failure 

•  individual components of the system and individual bits of data 
should not be trusted… however, the entire system and the data 
should be trusted with statistical confidence. 

–  we have to build algorithms that are robust with statistical confidence 

•  in certain cases, we can measure performance with an 
estimator (e.g. a model that produces a projected value): 

–  failure that is governed by a normal (or at least a known) distribution 
–  failure that is not catastrophic (i.e. errors do not compound) 
–  when we have built and validated a statistical estimator for the system 
–  when we can’t do any better 

•  otherwise we need to determine best and worst case bounds  
as well as the average case 

–  the bounds and the average provide a true system performance measure 



probability theory versus uncertainty 

 

 

 
•  subtle: approximations make the problem “solvable” 

–  however, often remove the ability to predict high-impact rare events  

•  problem typically reduced to one of probability theory 
–  classic probability theory by Laplace published in 1812 
–  modern probability theory by Kolmogorov published in 1933  
–  probability distributions are approximated as a KNOWN 
–  standard deviations are used to “reintroduce” the UNKNOWN 

•  how differ from rigorous calculations of risk and uncertainty? 
–  probability distributions are an UNKNOWN 
–  unified uncertainty theory by Owhadi published in 2013 

•  example: picking a red ball from a bag of 100 colored balls 
–  probability: if 10 balls are red, what’s the likelihood in picking a red ball? 
–  uncertainty: if on average 10 balls are red, what’s the likelihood of picking a red 

ball the next time? What’s the worst case and best case? 



why is catastrophic failure hard to predict? 

 

 

•  hardly anyone solves the "full problem" 
–  problems are high-dimensional, nonlinear, and non-convex 
–  real-world problems are usually considered “too big” to 

solve: too many parameters, too complex, etc… 

•  composing reduced problems with valid strong 
approximations is an area of active research 

–  calculations are expensive and require parallel computing 
–  the majority of the effort is often in finding a "best" model 

or probability distribution or prior 
–  once a "best" model/distribution is found, prediction and 

estimation are separate and often quick calculations 
–  iterative and renormalization steps can be used when 

predictions are found to conflict with problem constraints 

•  typical: use a prior and fix a probability distribution 
–  sampling off a fixed distribution can only predict rare 

events that have been observed (to inform the prior) 
–  can predict average behavior (given enough data), 

however fails to predict high-impact rare events 

•  standard 
approximations: 

–  convexity 
–  if the objective is 

expensive, use a 
less expensive 
(approximate) 
surrogate 

–  if data exists, use 
a best-fit 
surrogate to 
represent the data 
(throwing away 
data) 

–  worst: we extract 
a probability 
distribution from 
the data, 
assuming all 
future data 
matches the 
existing 
distribution 

Bayesian inference, machine learning, 
MCMC and other standard 
techniques all use this approach. 



example: seismic safety assessment 

§  Failure	
  occurs	
  when	
  axial	
  strain	
  in	
  
any	
  truss	
  member	
  exceeds	
  the	
  
member	
  yield	
  strain	
  

§  We	
  determine	
  the	
  probability	
  of	
  
non-­‐elas5c	
  failure	
  with	
  respect	
  to	
  
the	
  unknown	
  earthquake	
  ground	
  
mo5on	
  the	
  structure	
  will	
  experience	
  

a	
  truss	
  structure	
  

typical	
  scenarios	
  for	
  resul5ng	
  
ground	
  accelera5on	
  

when	
  axial	
  
strain	
  occurs	
  
near	
  truss	
  	
  
resonance	
  
modes,	
  failure	
  
can	
  occur	
  

Owhadi	
  et	
  al,	
  SIAM	
  Review	
  2012	
  

•  Problem:	
  Can	
  we	
  cer5fy	
  the	
  seismic	
  safety	
  of	
  a	
  
given	
  structure	
  subjected	
  to	
  earthquake	
  ground	
  
mo5on,	
  where	
  only	
  the	
  maximum	
  magnitude	
  and	
  
focal	
  distance	
  of	
  the	
  earthquake	
  are	
  known?	
  

•  We	
  construct	
  all	
  possible	
  earthquake	
  scenarios	
  
–  Random	
  inputs	
  of	
  high-­‐dimensionality	
  (~600)	
  

with	
  a	
  large	
  number	
  of	
  constraints	
  (~1200)	
  
–  Inputs	
  are	
  coefficients	
  ci	
  in	
  the	
  transfer	
  

func5on,	
  and	
  amplitudes	
  Xi	
  and	
  dura5ons	
  si	
  in	
  
the	
  earthquake	
  source	
  func5on	
  

•  Ground	
  accelera5on	
  is	
  a	
  convolu5on	
  of	
  the	
  source	
  
and	
  transfer	
  func5ons,	
  while	
  dynamics	
  of	
  joint	
  
deflec5on	
  are	
  governed	
  by	
  

probability	
  of	
  failure	
  as	
  
a	
  func5on	
  of	
  maximum	
  
ground	
  accelera5on	
  

value	
  at	
  risk 



assumptions have consequences 

 

 

•  An admissible set of scenarios can be constructed by 
considering the mean power spectrum 

•  The typical approach is to repeatedly sample white noise, 
then filter the samples through a given shape function to 
generate samples with a "typical" power spectrum 
–  amounts to a sampling from only one of the possible probability 

distributions 
–  results are dependent on how well the selected probability distribution 

applies to all possible scenarios (e.g. are outliers important?) 

•  This approach builds the "best" model based on past events, 
and hopes futures can be predicted explicitly from the past. 



the problem is… 

 

 

•  The past is not generally a good predictor of the future 

•  In general, we have two problem types: 
–  "best" case is easy to approximate 

–  seismic safety 
–  casualty estimates 

–  "average" case is easy to approximate 
–  stock market futures 
–  weather forecasting 
–  algorithmic performance 

•  Finding the remaining information is sketchy 
–  bounds found by standard deviations 
–  bounds found with monte carlo simulations 
–  bounds cannot be approximated 
 

value	
  at	
  risk 

value	
  at	
  risk 

hedge 

Poor approximations built into our statistical 
methods often lead to increasing confidence in incorrect results 



UQ with unknown probability distributions 

 

 

•  OUQ is an optimization problem to 
find the rigorous bounds on system 
behavior 

–  all information is captured as constraints 
–  constraints restrict the set of all possible 

solutions (by directly constraining solution 
space)  

–  systems with minimal to no experimental 
data or unobserved rare events that govern 
system behavior 

•  instead of selecting a "best" model or 
distribution or prior, we can optimize 
over all possible models, 
distributions, or priors. 

–  selecting a model or distribution is treated 
as an assumption or information (i.e. a 
constraint) 

–  our "prior" step becomes one of quantifying 
all the knowledge we have about the 
problem, and then encoding that 
knowledge as constraints 

•  min/max on probability measure 
space (not input parameter space) 

•  mean-constrained optimization 
balances weights and positions of 
Dirac masses around a critical point 

probability distribution  

probability measure 
(of Dirac masses) 

critical point  (mean constraint) 

how many points are required?  N+1 or less, 
where N is the number or constraints. 



Support Points at iteration 0 

initial basis for a probability distribution… 



Support Points at iteration 1000 

…solver looks for extremal cases…… 



Support Points at iteration 3000 

…collapses candidate scenarios… 



Support Points at iteration 7100 

…and solves for probability of failure 

most likely 
failure scenarios  

most likely 
success 
scenarios  



OUQ: a robust unifying UQ formulation 

 

 •  … 

–  … 

•  … 
– …  

•  … 
– … 

extremes are bound 
by information in the 
form of constraints 
 
formulated to handle 
UQ for catastrophic 
rare-events 



the math is simple, but infinite dimensional 

 

 

•  … 
–  … 
–  … 

•  … 
–  … 
–  … 
–  … 
–  … 
–  … 
–  … 
–  … 

…: … …: … 

 
 
 
 
   remember: using any 

 implicit approximations 
 destroy our ability to 
 guarantee our results  

enables rigorous calculation of 
bounds on system behavior 
 
note the optimal model is the 
most robust (e.g. the bounds 
minimally change on system 
change) 



the answer 

You are given one pound of playdoh.  
How much mass can you put above a while  
keeping  the seesaw balanced  around m?  

the question 

a simple infinite dimensional problem 



quantification in microstructure modeling 

 

 

•  motivating questions: 
–  How "good" is my model? 
–  How can I best improve my model? 
–  Given the uncertainty on microstructure does it                                   

make sense to perform an expensive simulation? 
–  Is there a "best" representation of the microstructure?                        

How can I find it? 
–  Can I turn the problem of finding the best model given          

computational constraints and available information                              
into an algorithm? 

real system 
QOI (quantity of interest) 

model 
predicted QOI 

? 

velocity 

failure 



target: UQ for shock in microstructures 

 

 

strength models in shock waves  

we want to estimate 

Shock Experiment 
Shock Simulation 

we can compute 

model uncertainty 

statistical error 

model error 

optimal bound on the statistical error 

failure 



used for model-parameter sensitivity 

 

 

•              dynamic discovery of     
       regions of criticality 

large-scale calculations of risk 

–  … 
–  … 
–  … 
–  … 
–  … 
–  … 

–  …  
–  … 
–  … 

–  … 

A	
  trading	
  scenario	
  generator	
  
creates	
  and	
  launches	
  thousands	
  of	
  
simula5ons	
  on	
  millions	
  of	
  trades.	
  

lem:	
  schema5c	
  of	
  major	
  
players	
  in	
  the	
  synap5c	
  
reac5on	
  network	
  

Crystal	
  structure	
  of	
  monoclinic	
  
zirconia,	
  with	
  oxygen	
  in	
  red	
  and	
  
zirconium	
  in	
  blue.	
  

The	
  par5al	
  density	
  of	
  states	
  at	
  
295	
  K	
  calculated	
  by	
  GULP	
  

shows	
  Zr	
  dominates	
  the	
  lower	
  
energy	
  modes.	
  

diameters help zero-in 
on regions of parameter 
space where parameters 
have desired impact 

sensitivity in synaptic reaction networks 

sensitivity of thermodynamic peak-
broadening to bond anharmonicity 

sensitivity = - |F(x') - F(x)|2  



 UQ for solid mechanics of 
hypervelocity ballistic impact 

–  … 
–  … 
–  … 
–  … 
–  … 
–  … 

the	
  area	
  of	
  the	
  above	
  hole	
  is	
  
determined	
  by	
  a	
  laser	
  probe	
  

hypervelocity	
  
ballis5cs	
  
launcher	
  and	
  
measurement	
  
system	
  	
  

an	
  impact	
  simula5on	
  is	
  
used	
  to	
  quickly	
  test	
  
materials	
  	
  response	
  	
  

                                    validation of strength models                             
                    for hypervelocity impact 

Schema5c	
  of	
  hypervelocity	
  impact	
  for	
  a	
  spherical	
  
steel	
  projec5le	
  fired	
  at	
  a	
  stainless	
  steel	
  plate.	
  	
  

A	
  Von	
  Mises	
  
yield	
  strength	
  
model	
  with	
  
velocity	
  =	
  100	
  
m/s	
  is	
  shown	
  5	
  s	
  
amer	
  impact.	
  

used for probability of system failure  

a	
  truss	
  structure	
  

typical	
  scenarios	
  for	
  resul5ng	
  
ground	
  accelera5on	
  

when	
  axial	
  
strain	
  occurs	
  
near	
  truss	
  	
  
resonance	
  
modes,	
  failure	
  
can	
  occur	
  

value	
  at	
  risk 
probability	
  of	
  failure	
  as	
  
a	
  func5on	
  of	
  maximum	
  
ground	
  accelera5on	
  

probability of elastoplastic failure under 
strain due to ground acceleration 

A	
  feasible	
  set	
  defined	
  by	
  bounds	
  

	
  …and	
  a	
  mean	
  constraint	
  on	
  area	
  



enables the formulation of better models 

 

 

We keep trying to design possible “experiments” to find the information 
set that certifies the system as “safe” (not failing within the given tolerance) 

We can hypothesize measurements of new information (say, a new constraint on 
the median of velocity, or on the angle of impact), and then optimize to see how that 
new information would alter the probability of the critical event. 



more questions == new objective functions 

 

 

 
•  Can I use OUQ to find if I can use sampling statistics? 

•  Can I find a suitable reduced-dimensional model? 

•  Which data points are the “most impactful”? 
–  after 1 year of hypervelocity impact experiments, post-analysis found that 

only 2 of the nearly 50 shots impacted the probability of failure bounds 
–  better: use the statistics as an guide for where to shoot next 

•  Formulation of these problems as OUQ questions, under the 
mystic framework, is designed to run asynchronously and to be 
resilient to failure. 
–  in many cases, this requires depth 5 optimization problems 



when bounds are violated, look for bugs! 

 

 

•  … 
•  … 

–  … 

•  … 
–  … 
–  … 
–  … 

•  … 

in an OUQ calculation of 
probability of failure, the 
results began violating the 
calculated system bounds 
 
subsequent OUQ analysis on 
elements of the calculation 
discovered a version update to 
code for kriging interpolation 
came with a new bug 
 
since this error represented a 
violation of our assumptions 
(information) about the 
problem, it led to results that 
violated the “worst case” 
bounds. 

with interpolation bug 

without interpolation bug 
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This is not in any way a solved problem, and I believe 
is just the opening gambit. 



 End Presentation 


